skip to main content


Search for: All records

Creators/Authors contains: "Millon, Martin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The gravitationally lensed supernova Refsdal appeared in multiple images produced through gravitational lensing by a massive foreground galaxy cluster. After the supernova appeared in 2014, lens models of the galaxy cluster predicted that an additional image of the supernova would appear in 2015, which was subsequently observed. We use the time delays between the images to perform a blinded measurement of the expansion rate of the Universe, quantified by the Hubble constant (H0). Using eight cluster lens models, we inferH0=64.84.3+4.4 kilometers per second per megaparsec. Using the two models most consistent with the observations, we findH0=66.63.3+4.1 kilometers per second per megaparsec. The observations are best reproduced by models that assign dark-matter halos to individual galaxies and the overall cluster.

     
    more » « less
    Free, publicly-accessible full text available June 9, 2024
  2. Abstract

    In late 2014, four images of supernova (SN) “Refsdal,” the first known example of a strongly lensed SN with multiple resolved images, were detected in the MACS J1149 galaxy-cluster field. Following the images’ discovery, the SN was predicted to reappear within hundreds of days at a new position ∼8″ away in the field. The observed reappearance in late 2015 makes it possible to carry out Refsdal’s original proposal to use a multiply imaged SN to measure the Hubble constantH0, since the time delay between appearances should vary inversely withH0. Moreover, the position, brightness, and timing of the reappearance enable a novel test of the blind predictions of galaxy-cluster models, which are typically constrained only by the positions of multiply imaged galaxies. We have developed a new photometry pipeline that usesDOLPHOTto measure the fluxes of the five images of SN Refsdal from difference images. We apply four separate techniques to perform a blind measurement of the relative time delays and magnification ratios between the last image SX and the earlier images S1–S4. We measure the relative time delay of SX–S1 to be376.05.5+5.6days and the relative magnification to be0.300.3+0.5. This corresponds to a 1.5% precision on the time delay and 17% precision for the magnification ratios and includes uncertainties due to millilensing and microlensing. In an accompanying paper, we place initial and blind constraints on the value of the Hubble constant.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Context. Persistent tension between low-redshift observations and the cosmic microwave background radiation (CMB), in terms of two fundamental distance scales set by the sound horizon r d and the Hubble constant H 0 , suggests new physics beyond the Standard Model, departures from concordance cosmology, or residual systematics. Aims. The role of different probe combinations must be assessed, as well as of different physical models that can alter the expansion history of the Universe and the inferred cosmological parameters. Methods. We examined recently updated distance calibrations from Cepheids, gravitational lensing time-delay observations, and the tip of the red giant branch. Calibrating the baryon acoustic oscillations and type Ia supernovae with combinations of the distance indicators, we obtained a joint and self-consistent measurement of H 0 and r d at low redshift, independent of cosmological models and CMB inference. In an attempt to alleviate the tension between late-time and CMB-based measurements, we considered four extensions of the standard ΛCDM model. Results. The sound horizon from our different measurements is r d  = (137 ± 3 stat.  ± 2 syst. ) Mpc based on absolute distance calibration from gravitational lensing and the cosmic distance ladder. Depending on the adopted distance indicators, the combined tension in H 0 and r d ranges between 2.3 and 5.1 σ , and it is independent of changes to the low-redshift expansion history. We find that modifications of ΛCDM that change the physics after recombination fail to provide a solution to the problem, for the reason that they only resolve the tension in H 0 , while the tension in r d remains unchanged. Pre-recombination extensions (with early dark energy or the effective number of neutrinos N eff  = 3.24 ± 0.16) are allowed by the data, unless the calibration from Cepheids is included. Conclusions. Results from time-delay lenses are consistent with those from distance-ladder calibrations and point to a discrepancy between absolute distance scales measured from the CMB (assuming the standard cosmological model) and late-time observations. New proposals to resolve this tension should be examined with respect to reconciling not only the Hubble constant but also the sound horizon derived from the CMB and other cosmological probes. 
    more » « less
  6. Abstract We present a measurement of the Hubble constant (H0) and other cosmological parameters from a joint analysis of six gravitationally lensed quasars with measured time delays. All lenses except the first are analyzed blindly with respect to the cosmological parameters. In a flat ΛCDM cosmology, we find $H_{0} = 73.3_{-1.8}^{+1.7}~\mathrm{km~s^{-1}~Mpc^{-1}}$, a $2.4{{\ \rm per\ cent}}$ precision measurement, in agreement with local measurements of H0 from type Ia supernovae calibrated by the distance ladder, but in 3.1σ tension with Planck observations of the cosmic microwave background (CMB). This method is completely independent of both the supernovae and CMB analyses. A combination of time-delay cosmography and the distance ladder results is in 5.3σ tension with Planck CMB determinations of H0 in flat ΛCDM. We compute Bayes factors to verify that all lenses give statistically consistent results, showing that we are not underestimating our uncertainties and are able to control our systematics. We explore extensions to flat ΛCDM using constraints from time-delay cosmography alone, as well as combinations with other cosmological probes, including CMB observations from Planck, baryon acoustic oscillations, and type Ia supernovae. Time-delay cosmography improves the precision of the other probes, demonstrating the strong complementarity. Allowing for spatial curvature does not resolve the tension with Planck. Using the distance constraints from time-delay cosmography to anchor the type Ia supernova distance scale, we reduce the sensitivity of our H0 inference to cosmological model assumptions. For six different cosmological models, our combined inference on H0 ranges from ∼73–78 km s−1 Mpc−1, which is consistent with the local distance ladder constraints. 
    more » « less
  7. ABSTRACT We present the measurement of the Hubble constant, H0, with three strong gravitational lens systems. We describe a blind analysis of both PG 1115+080 and HE 0435−1223 as well as an extension of our previous analysis of RXJ 1131−1231. For each lens, we combine new adaptive optics (AO) imaging from the Keck Telescope, obtained as part of the SHARP (Strong-lensing High Angular Resolution Programme) AO effort, with Hubble Space Telescope (HST) imaging, velocity dispersion measurements, and a description of the line-of-sight mass distribution to build an accurate and precise lens mass model. This mass model is then combined with the COSMOGRAIL-measured time delays in these systems to determine H0. We do both an AO-only and an AO + HST analysis of the systems and find that AO and HST results are consistent. After unblinding, the AO-only analysis gives $H_{0}=82.8^{+9.4}_{-8.3}~\rm km\, s^{-1}\, Mpc^{-1}$ for PG 1115+080, $H_{0}=70.1^{+5.3}_{-4.5}~\rm km\, s^{-1}\, Mpc^{-1}$ for HE 0435−1223, and $H_{0}=77.0^{+4.0}_{-4.6}~\rm km\, s^{-1}\, Mpc^{-1}$ for RXJ 1131−1231. The joint AO-only result for the three lenses is $H_{0}=75.6^{+3.2}_{-3.3}~\rm km\, s^{-1}\, Mpc^{-1}$. The joint result of the AO + HST analysis for the three lenses is $H_{0}=76.8^{+2.6}_{-2.6}~\rm km\, s^{-1}\, Mpc^{-1}$. All of these results assume a flat Λ cold dark matter cosmology with a uniform prior on Ωm in [0.05, 0.5] and H0 in [0, 150] $\rm km\, s^{-1}\, Mpc^{-1}$. This work is a collaboration of the SHARP and H0LiCOW teams, and shows that AO data can be used as the high-resolution imaging component in lens-based measurements of H0. The full time-delay cosmography results from a total of six strongly lensed systems are presented in a companion paper. 
    more » « less